

Effective from Session: 2024-25									
Course Code	B010501T/PY311	Title of the Course	Classical & Statistical Mechanics	L	Т	Р	С		
Year	Third	Semester	Fifth	4	0	0	4		
Pre-Requisite	10+2 with Physics	Co-requisite	Passed B.Sc. 2 nd Year						
Course Objectives	This course aims to give the students are expected	e students the competence I to the thorough knowledg	in the basic Classical Mechanics and Statistical Mechani e of basic concepts of Classical Mechanics and Statistical	cs. At t Mecha	the end on the end of	of the co	urse		

	Course Outcomes
CO1	Understand the concepts of generalized coordinates and D'Alembert's principle.
CO2	Understand the Lagrangian dynamics and the importance of cyclic coordinates.
CO3	Comprehend the difference between Lagrangian and Hamiltonian dynamics.
CO4	Study the important features of central force and its application in Kepler's problem.
CO5	Recognize the difference between macrostate and microstate.
CO6	Comprehend the concept of ensembles.
CO7	Understand the classical and quantum statistical distribution laws.
CO8	Study the applications of statistical distribution laws

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Constrained Motion	Constraints - Definition, Classification and Examples. Degrees of Freedom and Configuration space. Constrained system, Forces of constraint and Constrained motion. Generalised coordinates, Transformation equations and Generalised notations & relations. Principle of Virtual work and D'Alembert's principle	6	CO1
2	Lagrangian Formalism	Lagrangian for conservative & non-conservative systems, Lagrange's equation of motion (no derivation), Comparison of Newtonian & Lagrangian formulations, Cyclic coordinates, and Conservation laws (with proofs and properties of kinetic energy function included). Simple examples based on Lagrangian formulation.	9	CO2
3	Hamiltonian Formalism	Phase space, Hamiltonian for conservative & non-conservative systems, Physical significance of Hamiltonian, Hamilton's equation of motion (no derivation), Comparison of Lagrangian & Hamiltonian formulations, Cyclic coordinates, and Construction of Hamiltonian from Lagrangian. Simple examples based on Hamiltonian formulation.	8	CO3
4	Central Force	Definition and properties (with prove) of central force. Equation of motion and differential equation of orbit. Bound & unbound orbits, stable & non-stable orbits, closed & open orbits and Bertrand's theorem. Motion under inverse square law of force and derivation of Kepler's laws. Laplace-Runge-Lenz vector (Runge-Lenz vector) and its applications.	7	CO4
5	Macrostate and Microstate	Macrostate, Microstate, Number of accessible microstates and Postulate of equal a priori. Phase space, Phase trajectory, Volume element in phase space, Quantisation of phase space and number of accessible microstates for free particle in 1D, free particle in 3D & harmonic oscillator in 1D.	6	CO5
6	Concept of Ensemble	Problem with time average, concept of ensemble, postulate of ensemble average and Liouville's theorem (proof included). Micro Canonical, Canonical & Grand Canonical ensembles. Thermodynamic Probability, Postulate of Equilibrium and Boltzmann Entropy relation.	6	CO6
7	Distribution Laws	Statistical Distribution Laws: Expressions for number of accessible microstates, probability & number of particles in ith state at equilibrium for Maxwell-Boltzmann, Bose-Einstein & Fermi- Dirac statistics. Comparison of statistical distribution laws and their physical significance. Canonical Distribution Law: Boltzmann's Canonical Distribution Law, Boltzmann's Partition Function, Proof of Equipartition Theorem (Law of Equipartition of energy) and relation between Partition function and Thermodynamic potentials.	10	CO7
8	Applications of Statistical Distribution Laws	Application of Bose-Einstein Distribution Law: Photons in a black body cavity and derivation of Planck's Distribution Law. Application of Fermi-Dirac Distribution Law: Free electrons in a metal, Definition of Fermi energy, Determination of Fermi energy at absolute zero, Kinetic energy of Fermi gas at absolute zero and concept of Density of States (Density of Orbitals).	8	CO8
Referen	ce Books:			
1. Herb	ert Goldstein, Charles	P. Poole, John L. Satko, "Classical Mechanics", Pearson Education, India, 2011, 3e		
3. R.G.	Takwale, P.S. Puranil	x. "Introduction to Classical Mechanics". McGraw Hill, 2017		
4. F. Re	if, "Statistical Physics	s (In SI Units): Berkeley Physics Course Vol 5", McGraw Hill, 2017, 1e		
5. B.B.	Laud, "Fundamentals	of Statistical Mechanics", New Age International Private Limited, 2020, 2e		
6. B.K.	Agarwal, M. Eisner, '	'Statistical Mechanics", New Age International Private Limited, 2007, 2e		
e-Learn	ing Source:			
1. MIT	Open Learning - Mas	sachusetts Institute of Technology, <u>https://openlearning.mit.edu/</u>		
2. Natio	Dradach Uister E1	echnology Enhanced Learning (NPTEL), <u>https://www.youtube.com/user/nptelhrd</u>		
J. Uttar	riddesn Higher Educ	auon Dignai Liorary, <u>nup://neecontent.upsdc.gov.in/SearchContent.aspx</u>		
+. Sway		anno, <u>nups.//www.swayampraona.gov.nvmucz.pnp/program/current_nc/o</u>		

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4			
CO1	3	2	-	-	-	-	3	2	-	1	2			
CO2	3	2	-	-	-	-	3	3	-	1	2			
CO3	3	2	-	-	-	-	3	3	-	2	2			
CO4	3	2	-	-	-	1	3	3	-	3	2			
CO5	3	2	-	-	-	-	3	3	-	3	2			
CO6	3	2	-	-	-	-	3	2	-	1	2			
CO7	3	2	-	-	-	-	3	3	-	1	2			
CO8	3	2	-	-	-	-	3	3	-	2	2			

Effective	from Session: 2024-2:	5							
Course C	Code	B010502T/PY312	Title of the Course	Quantum Mechanics and Spectroscopy	L	Т	Р	С	
Year		Third	Semester	Fifth	4	0	0	4	
Pre-Requ	uisite	10+2 with Physics	Co-requisite	Passed B.Sc. 2 nd Year					
Course C	Course Objectives This course aims to give students the competence in the basic Quantum Mechanics and Spectroscopy. At the end of the course the students are expected to gain the thorough knowledge of basic Quantum Mechanics and Spectroscopy.								
			Course C	Outcomes					
CO1	Understand the significa	nce of operator formalism in Q	uantum mechanics.						
CO2	Study the eigen and expe	ectation value methods.							
CO3	Understand the basis and	d interpretation of Uncertainty p	principle.						
CO4	Develop the technique o	f solving Schrodinger equation	for 1D and 3D problems.						
CO5	Comprehend the success	s of Vector atomic model in the	theory of Atomic spectra.						
CO6	Study the different aspec	cts of spectra of Group I and II	elements.						
CO7	Study the production and	d applications of X-rays.							
CO8	CO8 Develop an understanding of the fundamental aspects of Molecular spectra.								
Unit No.	Init Contact Mapped No. Title of the Unit Contact Hrs. CO								

No.	Title of the Unit	Content of Unit	Hrs.	CO
1	Operator Formalism	Operators: Review of matrix algebra, definition of an operator, special operators, operator algebra and operators corresponding to various physical-dynamical variables. Commutators: Definition, commutator algebra and commutation relations among position, linear momentum and angular momentum and energy and time. Simple problems based on commutation relations.	5	CO1
2	Eigen and Expectation Values	Eigen and Expectation Values: Eigen equation for an operator, eigen state (value) and eigen functions. Linear superposition of eigen functions and Non-degenerate and Degenerate eigen states. Expectation value pertaining to an operator and its physical interpretation. Hermitian Operators: Definition, properties and applications. Prove of the Hermitian nature of various physical-dynamical operators.	6	CO2
3	Uncertainty Principle and Schrodinger Equation	 Uncertainty Principle: Commutativity and simultaneity (theorems with proofs). Non commutativity of operators as the basis for uncertainty principle and derivation of general form of uncertainty principle through Schwarz inequality. Uncertainty principle for various conjugate pairs of physical- dynamical parameters and its applications. Schrodinger Equation: Derivation of time independent and time dependent forms, Schrodinger equation as an eigen equation, Deviation and interpretation of equation of continuity in Schrodinger representation, and Equation of motion of an operator in Schrodinger representation. 	7	CO3
4	Applications of Schrodinger Equation	 Application to 1D Problems: Infinite Square well potential (Particle in 1D box), Finite Square well potential, Potential step, Rectangular potential barrier and 1D Harmonic oscillator. Application to 3D Problems: Infinite Square well potential (Particle in a 3D box) and the Hydrogen atom (radial distribution function and radial probability included). (Direct solutions of Hermite, Associated Legendre and Associated Laguerre differential equations to be substituted). 	12	CO4
5	Vector Atomic Model	Inadequacies of Bohr and Bohr-Sommerfeld atomic models w.r.t. spectrum of Hydrogen atom (fine structure of H-alpha line). Modification due to finite mass of nucleus and Deuteron spectrum. Vector atomic model (Stern-Gerlach experiment included) and physical and geometrical interpretations of various quantum numbers for single and many valence electron systems. LS and JJ couplings, spectroscopic notation for energy states, selection rules for transition of electrons and intensity rules for spectral lines. Fine structure of H-alpha line on the basis of vector atomic model.	10	CO5
6	Spectra of Alkali and Alkaline Elements	Spectra of Alkali Elements: Screening constants for s, p, d and f orbitals; sharp, principle, diffuse and fundamental series; doublet structure of spectra and fine structure of Sodium D line. Spectra of Alkaline Elements: Singlet and triplet structure of spectra.	6	CO6
7	X – Rays and X – Ray Spectra	Nature and production, Continuous X-ray spectrum and Duane-Hunt's law, Characteristic X-ray spectrum and Mosley's law, Fine structure of Characteristic X-ray spectrum, and X-ray absorption spectrum.	7	CO7
8	Molecular Spectra	Discrete set of energies of a molecule, electronic, vibrational and rotational energies. Quantisation of vibrational energies, transition rules and pure vibrational spectra. Quantisation of rotational energies, transition rules, pure rotational spectra and determination of inter nuclear distance. Rotational-Vibrational spectra; transition rules; fundamental band and hot band; O, P, Q, R, S branches.	7	CO8
Referenc	e Books:			
1. D.J. C	Briffiths, "Introduction to	Quantum Mechanics", Pearson Education, India, 2004, 2e		

E. Wichmann, "Quantum Physics (In SI Units): Berkeley Physics Course Vol 4", McGraw Hill, 2017 2.

Richard P. Feynman, Robert B. Leighton, Matthew Sands, "The Feynman Lectures on Physics - Vol. 3", Pearson Education Limited, 2012 R Murugeshan, Kiruthiga Sivaprasath, "Modern Physics", S. Chand Publishing, 2019, 18e 3. 4.

5. H.E. White, "Introduction to Atomic Spectra", McGraw Hill, 1934

C.N. Banwell, E.M. McCash, "Fundamentals of Molecular Spectroscopy", McGraw Hill, 2017, 4e 6.

S.L. Gupta, V. Kumar, R.C. Sharma, "Elements of Spectroscopy", Pragati Prakashan, Meerut, 2015, 27e 7.

e-Learning Source:

MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 1

2 National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd

3. Uttar Pradesh Higher Education Digital Library, <u>http://heecontent.upsdc.gov.in/SearchContent.aspx</u>

4. Swayam Prabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO-PSO	PO1	PO1	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4		
СО	101	102	105	104	105	100	10/	1501	1502	1303	1304		
CO1	3	2	-	-	-	-	3	2	-	1	2		
CO2	3	2	-	-	-	-	3	3	-	1	2		
CO3	3	2	-	-	-	-	3	3	-	2	2		
CO4	3	2	-	-	-	-	3	3	-	3	2		
CO5	3	2	-	-	-	-	3	3	-	3	2		
CO6	3	2	-	-	-	-	3	2	-	1	2		
CO7	3	2	-	-	-	-	3	3	-	1	2		
CO8	3	2	-	-	-	-	3	3	-	2	2		
		1	- Low Correlation	on: 2- Moderate	Correlation: 3-	Substantial Cor	relation						

Effective	e from Session: 2024	-25								
Course	Code	B010503P/PY313	3010503P/PY313 Title of the Course Demonstrative Aspects of Optics & Lasers							
Year		Third	Semester	Fifth	0	0	4	2		
Pre-Req	luisite	10+2 with Physics	Co-requisite	Passed B.Sc. 2 nd Year						
Course	Course Objectives The purpose of this undergraduate course is to impart practical knowledge/measurements in Optics through different experiments related to its theoretical course.									
	Course Outcomes									
CO1	CO1 To understand the application of Fresnel's Biprism in determination of Wavelength of Light and thickness of a thin sheet.									
CO2	CO2 To understand the application of Newton's Ring in determination of Wavelength of Light and Refractive Index of a Transparent Liquid.									

CO3 To find the Resolving Power of a grating and to understand its application in determination of wavelength of different colours of light.

CO4 To find the dispersive power of a prism and refractive index of its material using spectrometer.

CO5 To find the specific resistance of sugar solution using polarimeter and wavelength of Laser light using single slit diffraction.

* A student has to perform at least 7 experiments from the Offline Experiment List and 3 from the Online Virtual Lab Experiment List / Link.

Experiment No.	Title of the Experiment	Content of Unit (*Offline)	Contact Hrs.	Mappe d CO
1	Wavelength by Fresnel's Biprism	Fresnel Biprism: Wavelength of sodium light	4	CO1
2	Thickness by Fresnel's Biprism	Fresnel Biprism: Thickness of mica sheet	4	CO1
3	Wavelength by Newton's Ring	Newton's Rings: Wavelength of sodium light	4	CO2
4	Refractive Index by Newton's Ring	Newton's Rings: Refractive index of liquid	4	CO2
5	Resolving power of Grating	Plane Diffraction Grating: Resolving power	4	CO3
6	Wavelength by Diffraction Grating	Plane Diffraction Grating: Spectrum of mercury light	4	CO3
7	Refractive index of Prism	4	CO4	
8	Dispersive Power of Prism	Spectrometer: Dispersive power of the material of a prism using mercury light	4	CO4
9	Specific Rotation by Polarimeter	Polarimeter: Specific rotation of sugar solution	4	CO5
10	Wavelength of Laser Light	Wavelength of Laser light using diffraction by single slit	4	CO5
Experiment No.	Title of the Experiment	Content of Unit (*Online Virtual Lab)	Contact Hrs.	Mappe d CO
1	Michelson's Interferometer - Working	Michelson's Interferometer	4	CO1
2	Wavelength by Michelson's Interferometer	Michelson's Interferometer: Wavelength of laser beam	4	CO4
3	Wavelength by Newton's Ring	Newton's Rings: Wavelength of light	4	CO1
4	Refractive Index by Newton's Ring	Newton's Rings: Refractive index of liquid	4	CO4
5	Brewster's Law	Brewster's angle determination	4	CO4
6	Laser Beam Divergence	Laser beam divergence and spot size	4	CO2
7	Refractive index of Prism	Spectrometer: Refractive index of the material of a prism	4	CO4
8	Dispersive Power of Prism	Spectrometer: Dispersive power of a prism	4	CO2
9	Cauchy's Constant	Spectrometer: Determination of Cauchy's constants	4	
10	Wavelength by Diffraction Grating	Diffraction Grating	4	
Reference Boo	ks:			
1. B.L. Worsno	p, H.T. Flint, "Advanced Practical Physics fo	r Students", Methuen & Co., Ltd., London, 1962, 9e		
2. S. Panigrahi,	B. Mallick, "Engineering Practical Physics",	Cengage Learning India Pvt. Ltd., 2015, 1e		
3. R.K. Agrawa	l, G. Jain, R. Sharma, "Practical Physics", Kr	ishna Prakashan Media (Pvt.) Ltd., Meerut, 2019		
4. S.L. Gupta, V	7. Kumar, "Practical Physics", Pragati Prakas	han, Meerut, 2014, 2e		
e-Learning Sou	irce:			
1. Virtual Lab	s at Amrita Vishwa Vidyapeetham, <u>https://vla</u>	ab.amrita.edu/?sub=1&brch=74		
2. Virtual Lab	s at Amrita Vishwa Vidyapeetham, <u>https://vla</u>	b.amrita.edu/index.php?sub=1&brch=281		
3. Digital Plat	forms /Web Links of other virtual labs may b	e suggested / added to this lists by individual Universities.		

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO-PSO	PO1	PO2	PO3	PO4	PO5	P06	PO7	PSO1	PSO2	PSO3	PSO4		
CO	101	10-	1.00	10.	100	100	10,	1501	100-	1500	150.		
CO1	2						3	3			3		
CO2	2						3	3			3		
CO3	3						2	3			3		
CO4	2						3	3			3		
CO5	3						2	3		2	3		

Nai	me & S	Sign of	Program	Coordinator	
-----	--------	---------	---------	-------------	--

Effective	from Session: 2	024-25	0.0010		. ~	a							
Course C	Code	B01	.0601T/PY314	Title of	the Course	Solid State	and Nuclear I	Physics		L	T	P	C
Year		Thi		4	0	0	4						
Pre-Requ	uisite	10+	2 with Physics	Co-requ	lisite	Passed B.S	c. 2 ^{na} Year						
Course C	Objectives	This	s course aims to ected to gain the	give students t thorough knov	he competence wledge of Solid	in the basic S State and Nuc	olid State and N lear Physics.	Juclear Physics.	At the end of t	the co	urse the	student	s are
					Course	Outcomes							
CO1	Understand the	crystal geon	netry w.r.t. symn	netry operation	IS.								
CO2	Comprehend th	e power of Y	K-ray diffraction	and the concept	ot of reciprocal	lattice.							
CO3	Study various p	properties bas	sed on crystal bir	ndings.									
CO4	Recognize the	importance o	of Free Electron a	and Band theor	ies in understar	nding the cryst	al properties.						
CO5	Study the salier	nt features of	nuclear forces a	nd radioactive	decays.								
CO6	Understand the	importance	of nuclear model	s and nuclear 1	reactions.								
CO7	Comprehend th	e working a	nd applications o	f nuclear accel	erators and dete	ectors.							
CO8	Understand the	classificatio	n and properties	of basic buildi	ng blocks of na	ture.							
Unit No.	Title of the U	nit			Co	ontact Hrs.	Ma	pped CO					
		Lattice	e, Basis and Cry	stal structure.	Lattice transla	tion vectors, I	Primitive and n	on-primitive cel	ls. Symmetry				
1	Crystal Structure	operat and M Chlori	ions, Point group Ailler indices. S ide, Cesium Chlo	Lattice planes hide, Sodium		7	C	01					
_	Crystal	X-ray metho	diffraction and ds_Derivation_c	Bragg's law.	Experimental over amplitude.	diffraction me Reciprocal la	thods - Laue,	Rotating crystal	and Powder		_		
2	Diffraction	betwee	en Direct and Re to SC, BCC and	ciprocal lattice	e. Diffraction c Atomic Form f	onditions, Ewa	ald's method an tal Structure fac	d Brillouin zone	es. Reciprocal		7	С	02
		Classi	fication of Cryst	als on the Bas	is of Bonding -	Ionic, Covale	nt, Metallic, va	in der Waals (M	olecular) and	1			
3	Crystal Bindi	ng Hydro	ogen bonded. Cr	ystals of inert	t gases, Attrac	tive interactio	n (van der Wa	als- London) a	nd Repulsive	1	7	C	.03
		interac	ls Cohesive energy	iii iattice con rov Madelung	energy and eve	e energy and duation of Ma	Compressibilit	y and Bulk m	ouulus. Ionic	1			
		Lattic	e Vibrations:	Lattice vibrati	ions for linear	mono and c	li atomic chair	ns Dispersion	relations and				
		Acous	tical and Optical	l branches (qu	alitative treatm	ent). Qualitati	ve description	of Phonons in s	olids. Lattice				
	T	heat c	apacity, Dulong-	Petit's law and	l Einstein's theo	ory of lattice h	eat capacity.						
4	Lattice	Free 1	Electron Theory	y: Fermi energ	y, Density of s	tates, Heat ca	bacity of condu	ction electrons,	Paramagnetic		9	C	04
	vibrations	suscep	tibility of condu	C									
		Band	Theory: Origin	of band theo	ry, Qualitative	idea of Block	n theorem, Kro	nig-Penney mo	lel, Effective	1			
		mass o	of an electron and	d Concept of H	Ioles and Classi	ification of sol	ids on the basis	of band theory.		-			
	N 1 -	Gener	ral Properties o	f Nucleus: M	ass, binding er	nergy, radii, d	ensity, angular	momentum, ma	gnetic dipole				
F	Nuclear Forc	es mome	nt vector and ele	ctric quadrupo	the moment tens	or.	non anora i - (- (1	0		05
5	and Radioacti	ve Nucle	ar Forces: Gene	Nuclear -t-1	ue or nuclear fo	orce and Deute	ron ground state	e properties.	alpha da	1	9		05
	Decays	Kadio gamm	acuve Decays:	tron canture for	iny, pasie idea	s about peta 1 is of radioactiv	mus decay, b	eta plus decay,	aipita decay,	1			
		Nucle	ar Models: Lia	uid drop mode	el and Bethe-W	veizsacker ma	ss formula Sin	gle particle she	ll model (the				
	Nuclear Mode	els level s	scheme in the cor	text of reprod	uction of magic	numbers inclu	ided).	igie purificie site	ii iiiodei (uie			~	
6	and Nuclear	Nucle	ar Reactions: E	Bethe's notation	n, types of nuc	lear reaction,	Conservation la	aws, Cross-secti	on of nuclear		9	C	06
	Reactions	reactio	on, Theory of nuc	clear fission (q	ualitative), Nuc	clear reactors a	nd Nuclear fusi	on.					
	Accolonations -	nd Accel	erators: Theory,	working and a	applications of '	Van de Graaff	accelerator, Cy	clotron and Syne	chrotron.	1			
7	Accelerators a	Detec	tors: Theory, wo	orking and appl	lications of GM	l counter, Sem	iconductor dete	ctor, Scintillatio	n counter and	1	6	C	07
	Detectors	Wilso	n cloud chamber										
		Funda	mental interaction	ons and their	mediating quar	nta. Concept o	of antiparticles.	Classification	of elementary	1			
8	Elementary	partic	les based on intr	rinsic-spin, ma	ass, interaction	and lifetime.	Families of Le	eptons, Mesons,	Baryons and		6	C	08
	Particles	Baryo	n Resonances.	Conservation	laws for mass	-energy, linea	r momentum,	angular momer	tum, electric	1	~		20
Defe	Dool	charge	e, baryonic charg	e, Ieptonic cha	irge, isospin and	a strangeness.	Concept of Qua	Irk model.		1		L	
1 Charlen	e Books:	luction to C	lid State Di! ?	Wiley I. 4: 1	Drivota Limite 1	2012 8-							
1. Char	Dekker "Solid Se	ate Physics"	Macmillan Indi	, whey india	riivate Limited	, 2012, ðe							
2. A.J. 3 PV	Puri VK Rabbo	ar "Solid Sto	te Physics" S C	hand Publishie	5 ng 2015								
4 Kenn	eth S Krane "In	troductory N	luclear Physics "	Wiley India D	rivate Limited	2008							
5 Bern	ard L. Cohen "C	oncents of N	uclear Physics"	McGraw Hill	2017	2000							
6. S N	Ghoshal "Nucle	ar Physics"	S. Chand Publish	ing. 2019	2011								
e-Learnin	ng Source:												
1. MIT	Open Learning -	Massachuse	tts Institute of Te	chnology, http	os://openlearnin	g.mit.edu/							
2. Natio	onal Programme	on Technolog	gy Enhanced Lea	rning (NPTEL	.), https://www.	youtube.com/	user/nptelhrd						
3. Uttar	Pradesh Higher	Education D	igital Library, <u>ht</u>	tp://heecontent	.upsdc.gov.in/S	SearchContent.	aspx						
4. Sway	/am Prabha - DT	H Channel, h	https://www.sway	amprabha.gov	.in/index.php/p	orogram/curren	t_he/8						
				Course Ar	ticulation Matr	ix: (Manning (of COs with PO	s and PSOs)					
PO-PSO	D O1	DOJ	DO3	DO4	DO5		D07	DCO1	DEO1		DEO2		0504
CO	POI	P02	P03	P04	P05	PO6	P0/	1501	PS02		PS03	ł	504
C01	3	2		-		-	3	2	-	+	1		2
CO2	3	2	-	-	-	-	3	3	-	_	1		2
C03	3	2	-	-	-	-	3	3	-	_	2		2
C04	3	2	-	-	-	-	3	3	-	+	3		2
C05	3	2		-		<u> </u>		2					
C07	3	2					3	3	-	+	1		2
C08	3	2	+ -	-	-	-	3	3	-	+	2		2
000		-	1	1	1	1					-		

Effective from Session: 2024-25								
Course Code	B010602T/PY315	Title of the Course	Analog & Digital Principles & Applications	L	Т	Р	С	
Year	Third	Semester	Sixth	4	0	0	4	
Pre-Requisite	10+2 with Physics	Co-requisite	Passed B.Sc. 2 nd Year					
Course Objectives	This course aims to give students the competence in Analog and Digital Electronics. At the end of the course the students are expected to gain the thorough knowledge of Analog and Digital Electronics and their applications in daily life.							

	Course Outcomes
CO1	Study the drift and diffusion of charge carriers in a semiconductor.
CO2	Understand the Two-Port model of a transistor.
CO3	Study the working, properties and uses of FETs.
CO4	Comprehend the design and operations of SCRs and UJTs.
CO5	Understand various number systems and binary codes.
CO6	Familiarize with binary arithmetic.
CO7	Study the working and properties of various logic gates.
CO8	Comprehend the design of combinational and sequential circuits

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Semiconductor Junction	Expressions for Fermi energy, Electron density in conduction band, Hole density in valence band, Drift of charge carriers (mobility & conductivity), Diffusion of charge carries and Life time of charge carries in a semiconductor. Work function in metals and semiconductors. Expressions for Barrier potential, Barrier width and Junction capacitance (diffusion & transition) for depletion layer in a PN junction. Expressions for Current (diode equation) and Dynamic resistance for PN junction.	9	CO1
2	Transistor Modelling	Transistor as Two-Port Network. Notation for dc & ac components of voltage & current. Quantitative discussion of Z, Y & h parameters and their equivalent two-generator model circuits. h-parameters for CB, CE & CC configurations. Analysis of transistor amplifier using the hybrid equivalent model and estimation of Input Impedance, Output Impedance and Gain (current, voltage & power).	8	CO2
3	Field Effect Transistors	JFET: Construction (N channel & P channel); Configuration (CS, CD & CG); Operation in different regions (Ohmic or Linear, Saturated or Active or Pinch off & Break down); Important Terms (Shorted Gate Drain Current, Pinch Off Voltage & Gate Source Cut-Off Voltage); Expression for Drain Current (Shockley equation); Characteristics (Drain & Transfer); Parameters (Drain Resistance, Mutual Conductance or Transconductance & Amplification Factor); Biasing w.r.t. CS configuration (Self Bias & Voltage Divider Bias); Amplifiers (CS & CD or Source Follower); Comparison (N & P channels and BJTs & JFETs). MOSFET: Construction and Working of DE-MOSFET (N channel & P channel) and E-MOSFET (N channel & P channel); Characteristics (Drain & Transfer) of DE-MOSFET and E-MOSFET; Comparison of JFFET and MOSFET.	8	CO3
4	Other Devices	SCR: Construction; Equivalent Circuits (Two Diodes, Two Transistors & One Diode-One Transistor); Working (Off state & On state); Characteristics; Applications (Static switch, Phase control system & Battery charger). UJT: Construction; Equivalent Circuit; Working (Cutoff, Negative Resistance & Saturation regions); Characteristics (Peak & Valley points); Applications (Trigger circuits, Relaxation oscillators & Sawtooth generators).	5	CO4
5	Number System	Number Systems: Binary, Octal, Decimal & Hexadecimal number systems and their inter conversion. Binary Codes: BCD, Excess-3 (XS3), Parity, Gray, ASCII & EBCDIC Codes and their advantages & disadvantages. Data representation.	6	CO5
6	Binary Arithmetic	Binary Addition, Decimal Subtraction using 9's & 10's complement, Binary Subtraction using 1's & 2's compliment, Multiplication and Division.	5	CO6
7	Logic Gates	Truth Table, Symbolic Representation and Properties of OR, AND, NOT, NOR, NAND, EX-OR & EX-NOR Gates. Implementation of OR, AND & NOT gates (realization using diodes & transistor). De Morgan's theorems. NOR & NAND gates as Universal Gates. Application of EX-OR & EX-NOR gates as pairty checker. Boolean Algebra. Karnaugh Map.	9	CO7
8	Combinational and Sequential Circuits	Combinational Circuits: Half Adder, Full Adder, Parallel Adder, Half Substractor, Full Substractor. Data Processing Circuits: Multiplexer, Demultiplexer, Decoders & Encoders. Sequential Circuits: SR, JK & D Flip-Flops, Shift Register (transfer operation of Flip-Flops), and Asynchronous & Synchronous counters.	10	CO8
Reference	e Books:			
1. R.L.I	Boylestad, L. Nashelsky, "	Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2015, 11e		
2. J. Mil	Iman, C.C. Halkias, Saty	abrata Jit, "Electronic Devices and Circuits", McGraw Hill, 2015, 4e		
3. B.G.	Sucetman, S.K. Banerjee Ryder, "Electronic Funda	, Sond State Electronic Devices', Pearson Education India, 2015, /e		
5. SL (Supta, V. Kumar "Hand	Book of Electronics". Pragati Prakashan. Meerut. 2016. 43e		
6. D. Le	ach, A. Malvino, Goutan	1 Saha, "Digital Principles and Applications", McGraw Hill, 2010, 7e		
7. Willia	am H. Gothmann, "Digi	tal Electronics: An Introduction to Theory and Practice", Prentice-Hall of India Private Limited, 1982, 2e		
8. R.P. J	lain, "Modern Digital Ele	ctronics", McGraw Hill, 2009, 4e		
e-Learni	ng Source:			
1. MIT	Open Learning - Massac	husetts Institute of Technology, https://openlearning.mit.edu/		
2. Natio	nal Programme on Tech	nology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd		
3. Uttar	Pradesh Higher Education	on Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx		

4. Swayam Prabha - DTH Channel, <u>https://www.swayamprabha.gov.in/index.php/program/current_he/8</u>

				Course A	rticulation Matr	ix: (Mapping of	COs with POs a	and PSOs)			
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO	101	102	105	104	105	100	10/	1501	1502	1505	1504
CO1	3	2	-	-	-	-	3	2	-	1	2
CO2	3	2	-	-	-	-	3	3	-	1	2
CO3	3	2	-	-	-	-	3	3	-	2	2
CO4	3	2	-	-	-	-	3	3	-	3	2
CO5	3	2	-	-	-	-	3	3	-	3	2
CO6	3	2	-	-	-	-	3	2	-	1	2
CO7	3	2	-	-	-	-	3	3	-	1	2
CO8	3	2	-	-	-	-	3	3	-	2	2
				1 Law Campala	tion 2 Madana	to Completions	2 Substantial C	annolation			

Name and Sign of Program Coordinator	
--------------------------------------	--

Effective from Session: 2024-25										
Course	Code	B010603P/PY316	Title of the Course	tle of the Course Analog & Digital Circuits L T P						
Year		Third	Semester	Sixth	0	0	4	2		
Pre-Rec	quisite	10+2 with Physics	+2 with Physics Co-requisite Passed B.Sc. 2 nd Year							
Course	Course Objectives The purpose of this undergraduate course is to impart practical knowledge/measurements in Analog and Digital Electronics through different experiments related to its theoretical course.									
	Course Outcomes									
CO1	CO1 To learn about the different methods of finding the energy band gap of a semiconductor.									
CON										

CO2To calculate the hybrid parameter of a transistor from normal parameters.CO3To study the behaviour of FET and MOSFET from their characteristic curves.

 CO4
 To study the behaviour of FET and MOSFET from their characteristic curves.

 CO4
 To study the behaviour of SCR and UJT from their characteristic curves.

 CO5
 To study the functioning the working of different logic gates.

* A student has to perform at least 7 experiments from the Offline Experiment List and 3 from the Online Virtual Lab Experiment List / Link.

Experiment No.	Title of the Experiment	Aim of the Experiment (*Offline)	Contact Hrs.	Mapped CO
1	Energy Band Gap	To find the energy band gap of semiconductor by reverse saturation current method.	4	CO1
2	Four Probe Method	To find the energy band gap of semiconductor by four probe method.	4	CO1
3	Hybrid parameters of transistor	To find the hybrid parameters (h $-$ parameters) of a transistor in Common Emitter Mode	4	CO2
4	Field Effect Transistor (FET)	To study the characteristics of FET.	4	CO3
5	Metal Oxide Field Effect Transistor (MOSFET)	To study the characteristics of MOSFET.	4	CO3
6	Silicon Controlled Rectifier	To study the characteristics of SCR.	4	CO4
7	Unijunction Transistor	To study the characteristics of UJT.	4	CO4
8	Logic Gates	To study and verify the logics of: (i) AND gate using TTL IC 7408 (ii) OR gate using TTL IC 7432 (iii) NOT gate using TTL IC 7404 (iv) Ex-OR gate using TTL IC 7486 (v) NAND gate and use as Universal gate using TTL IC 7400 (vi) NOR gate and use as Universal gate using TTL IC 7402	4	CO5
Experiment No.	Title of the Experiment	Aim of the Experiment (*Online Virtual Lab)	Contact Hrs.	Mapped CO
1	Field Effect Transistor (FET)	$I_D\mathchar`-V_D$ characteristics of Junction Field Effect Transistor (JFET)		
2	Silicon Controlled Rectifier	Silicon Controlled Rectifier (SCR) characteristics		
3	Unijunction Transistor	Unijunction Transistor (UJT) and relaxation oscillator		
4	Logic Gates	Verification and interpretation of truth table for AND, OR, NOT, NAND, NOR, Ex-OR, Ex- NOR gates		
5	Half Adder and Full Adder	Construction of half and full adder using XOR and NAND gates and verification of its operation		
6	Half Subtractor and Full Subtractor	To study and verify half and full subtractor		
7	Universal Gates	Realization of logic functions with the help of Universal Gates (NAND, NOR)		
8	NOR Gate Latch	Construction of a NOR gate latch and verification of its operation		
9	Flip Flops	Verify the truth table of RS, JK, T and D Flip Flops using NAND and NOR gates		
10	Shift Registers	Design and verify the 4-Bit Serial In - Parallel Out Shift Registers		
11	Decoder and Encoders	Implementation and verification of decoder or demultiplexer and encoder using logic gates		
12	Multiplexer and Demultiplexer	Implementation of 4x1 multiplexer and 1x4 demultiplexer using logic gates		
13	Synchronous and Asynchronous Counter	Design and verify the 4-Bit Synchronous or Asynchronous Counter using JK Flip Flop		
14	Binary to Gray and Gray to Binary conversion	Verify Binary to Gray and Gray to Binary conversion using NAND gates only		
15	1-Bit and 2-Bit comparator	Verify the truth table of 1-Bit and 2-Bit comparator using logic gates		
Reference Boo	ks:			
 R.L. Boylestad, 	L. Nashelsky, "Electronic Devices and Circuit Theorem	ry", Prentice-Hall of India Pvt. Ltd., 2015, 11e		
2. J. Millman, C.C	C. Halkias, Satyabrata Jit, "Electronic Devices and	Circuits", McGraw Hill, 2015, 4e		
3. B.G. Streetman	n, S.K. Banerjee, "Solid State Electronic Devices", 1	Pearson Education India, 2015, 7e		
4. J.D. Ryder, "El	lectronic Fundamentals and Applications", Prentice	-Hall of India Private Limited, 1975, 5e		
5. S.L. Gupta, V.	Kumar, "Hand Book of Electronics", Pragati Praka	Isnan, Meerut, 2016, 43e		
6. D. Leach, A. M.	Talvino, Goutam Sana, "Digital Principles and Appl	Incations", McGraw Hill, 2010, /e		
7. William H. Go	dam Digital Electronics: An Introduction to	o meory and practice, prentice-mail of India Private Limited, 1982, 2e		
o. K.P. Jain, Mo	deni Digital Electronics, McOraw Hill, 2009, 4e			
1 Virtual Labe at	: Amrita Vishwa Vidyaneetham https://ylab.amrita	edu/?sub=1&brcb=74		
2. Virtual Labs at	Amrita Vishwa Vidyapeetham, https://vidb.amrita.	edu/index.php?sub=1&brch=281		
3 Digital Platfor	me /Web I inke of other virtual labe may be sugges	ted / added to this lists by individual Universities		

			C	Course Arti	culation I	Matrix: (Ma	apping of CO	s with POs and	PSOs)		
PO-PSO	PO1	PO2	PO3	PO4	PO5	POG	PO7	PSO1	PSO2	PSO3	PSO4
CO	101	102	105	104	105	100	10/	1501	1502	1505	1504
CO1	2						3	3			3
CO2	2						3	3			3
CO3	3						2	3			3
CO4	2						3	3			3
CO5	3						2	3		2	3

Name & Sign of Program Coordinator	Sign & Seal of HoD